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Abstract
We study the finite-size effects on the critical temperature in spatially restricted systems with
bulk second-order phase transition using the Fokker–Planck equation approach. It is established
that the dependence of the transition temperature on system size is characterized by the
competition of two length scales. The first scale is similar to the correlation length, determining
the critical behavior in sufficiently large samples. The second scale appears as a consequence of
the stochastic nature of the order parameter and controls the transitional features in small
samples, particularly in the vicinity of the critical size. It is also found that the rate of the
critical slowdown of relaxation of the order parameter fluctuations increases as the volume of
the system decreases.

1. Introduction

The size effects on phase transition in ferroelectrics has been
known since the 1950s [1, 2] but, due to their practical
importance [3, 4], the interest in restricted condensed systems
continues to be high nowadays as well. According to
the phenomenological finite-size scaling theory [5–8], when
the correlation length ξ(T ) attains, in the vicinity of the
critical temperature Tc, a magnitude of the order of the
characteristic size L of a finite system, the deviations from
the genuine critical behavior will set in: the singularities in
the thermodynamic functions become rounded extrema located
in somewhat shifted positions. It is predicted that the finite-
size effects on the critical phenomenon are controlled by the
ratio L/ξ . This assertion determines the shift of the critical
temperature of a finite-size system, particularly the lowering
of Tc as the dimension decreases, until the critical size is
reached at which the transition temperature vanishes. The
critical size and size effect on the transition temperature in
various ferroelectric systems, see e.g., [9–13], have recently
been actively investigated.

In order to establish the size-induced features on confined
condensed systems, we have proposed the complementarity
between the deterministic behavior of the bulk sample and its
stochastic nature in the finite volume case. When an external

periodic field is also present, the complementarity leads to
transformation of the phase transition anomaly in the bulk
sample [14] to stochastic resonance [15–18] in a sufficiently
small system [19]. The latter approach can be applied to
the interpretation of the dielectric constant measurements in
the ceramic and relaxor ferroelectrics [20–24], representing
particularly the experimentally established fact that the
system dimension decrease is attended by an increase in the
diffuseness of the phase transition and lowering of the critical
temperature [23–27].

In this paper we present a numerical analysis of the
size-dependent evolution of the critical temperature which is
associated with a critical slowdown of relaxation of the order
parameter fluctuations in spatially restricted systems. We
demonstrate that the Landau relaxation rates introduced in the
conventional second-order phase transition theory have to be
replaced in a finite sample by the first and third eigenvalues of
the Fokker–Planck operator. We will derive the shift exponent
and show that, despite the crucial role of correlations on the
critical phenomenon in macroscopic systems, in the vicinity of
the critical size the phase transition is driven by the thermal
fluctuations, i.e. the stochastic nature of the order parameter
dominates in sufficiently small samples. The increase of the
slowdown rate in the transitional region is another feature of
the relaxation mechanism established near the critical size.
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2. Relaxation times

We start with the one-dimensional equation of overdamped
motion for the order parameter ϕ, namely

dϕ(t)

dt
= −∂U(ϕ; T )

∂ϕ
+ A +

√
T

V
ζ(t), (1)

where ζ(t) is the zero mean Gaussian white noise with the
correlation function 〈ζ(t)ζ(t ′)〉 = 2δ(t − t ′), T is temperature,
V is the volume of the sample, A is an applied force term and
a temperature-dependent soft potential is taken in the Landau
form [14]

U(ϕ; T ) = 1
2 a(T )ϕ2 + 1

4ϕ
4, (2)

with a(T ) = α(T − T ∞
c ), where the constant α > 0 and T ∞

c is
the temperature of the bulk second-order phase transition. The
potential U(ϕ; T ) is bistable if T < T ∞

c and monostable if
T > T ∞

c . The equilibrium of the system is described by the
partition function

Z =
∫ ∞

−∞
exp

{
− V

T
[U(ϕ; T ) − Aϕ]

}
dϕ, (3)

assuming here that A = const. The latter expression coincides
with the partition function of a small particle of a system
undergoing a second-order phase transition in the bulk limit
(a so-called zero-dimensional system). Here the smallness
of the particle implies that its dimensions are smaller than
the correlation length of the order parameter fluctuations [28].
In (3), the function F(ϕ) = V (U(ϕ; T ) − Aϕ) is interpreted
as reduced free energy, in which all degrees of freedom have
been taken into account except those associated with the order
parameter ϕ. Note also that the free energy density determined
as � = −T V −1 ln Z reduces in the limit V → ∞ to the
minimal (equilibrium) value of the homogeneous Landau free
energy F(ϕ) [14]. Furthermore, the infinite volume limit in the
equation of motion (1) leaves us with the Landau–Khalatnikov
equation describing the deterministic relaxation of the order
parameter to its equilibrium position. On the other hand,
it seems to be legitimate that, as the dimension decreases,
the fluctuations of the order parameter will increase. So the
Langevin equation (1) correctly describes, at least in qualitative
terms, the evolution of the order parameter ϕ in the samples of
bulk second-order phase transitions.

Note that in the present scheme the inhomogeneity of
fluctuations is neglected. Another limiting case is the Gaussian
approximation [29] which incorporates the spatial variance of
fluctuations, but neglects, first of all, interwell motions in the
potential (2). Both of these particular cases stem from the
general Landau free energy expansion where the second-and
fourth-order terms as well as the squared gradient of the order
parameter are taken into account.

According to the scheme developed in [16], the stationary
autocorrelation function of the order parameter in the
asymptotic time limit can be expressed as

〈ϕ(t)ϕ(0)〉 = g1 e−λ1t + g3 e−λ3t , (4)

where
g1 = 〈ϕ2〉st − g3, (5)

g3 = [λ1 − a(T )]〈ϕ2〉st − 〈ϕ4〉st

λ1 − λ3
. (6)

Here 〈· · ·〉st = ∫ ∞
−∞ · · · Pst(ϕ) dϕ, where Pst(ϕ) is the

stationary probability distribution of the non-perturbed
system and λ1,3 are the first and third eigenvalues of the
non-perturbed Fokker–Planck operator associated with the
Langevin equation (1), i.e.

L̂FP(ϕ) = ∂

∂ϕ

∂U(ϕ; T )

∂ϕ
+ T

V

∂2

∂ϕ2
. (7)

Note also that only odd eigenvalues contribute to (4) in
accordance with [30]. In (4), the term proportional to the
coefficient g1 describes the contribution from the interwell
or hopping dynamics with the characteristic time τ1 = λ−1

1 ,
and the term proportional to the coefficient g3 describes
the contribution from the intrawell or local dynamics with
corresponding characteristic time τ3 = λ−1

3 to the correlation
in the bistable regime [16]. As revealed by further analysis,
a sufficiently large timescale separation between the interwell
hopping and intrawell motion holds for a whole range of
parameters under consideration. This is the only substantial
restriction for the expansion (4).

In the bulk limit, the characteristic time τ1 diverges below
T ∞

c and g1 e−λ1 t → −a(T ), reflecting the fact that τ3

governs the leading time dependence of the autocorrelation
function (4) of a large system below T ∞

c . Above T ∞
c this

characteristic time represents only a subleading relaxation
time [31]. The same consequence follows from the
examination of the susceptibility which can be derived from the
correlation function (4) by means of the fluctuation–dissipation
relation [16]. Correspondingly, in the bulk limit we have

χ(T,�) = λ1,3 − i�

λ2
1,3 + �2

, (8)

where � is the frequency of the applied periodic field A(t).
One must choose λ1 = a(T ) if T > T ∞

c and λ3 = −2a(T )

if T < T ∞
c . Thus, in this limit the conventional Landau phase

transition theory realizes with the anomaly of the susceptibility
at the phase transition temperature T ∞

c . We also emphasize
that the bulk transition temperature T ∞

c itself may be derived
as a point where the corresponding relaxation rates vanish. We
suppose that this peculiarity also persists for the finite samples,
allowing us to determine the critical temperature (more exactly,
pseudocritical temperature [8]) in these systems.

3. Finite-size behavior of the eigenvalues

We calculate the eigenvalues λ1,3, the inverse values of which
give us the relaxation times τ1,3 = λ−1

1,3 numerically, solving
the corresponding Schrödinger equation [32] by means of the
symplectic method, see, e.g., [33]. The relevant Schrödinger
operator has the form

L̂S(ϕ) = T

V

∂2

∂ϕ2
− US(ϕ; T ) (9)
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Figure 1. The plots of the eigenvalues λ1,3 ((a), (b), (c): solid lines) versus temperature for various volumes V = 0.1 (a), V = 1 (b) and
V = 10 (c). The dashed lines in ((a), (b), (c)) are defined as 2α(T ∞

c − T ) for T < T ∞
c and α(T − T ∞

c ) for T > T ∞
c . In (d) the sketch of the

third eigenfunction below T ∞
c and the first eigenfunction above T ∞

c for V = 1 is given (solid lines) with the corresponding bistable and
monostable behavior (dashed lines) of the Landau potential (2). Here we use T ∞

c = 10 and α = 10.

with the potential

US(ϕ; T ) = V

4T

(
∂U(ϕ; T )

∂ϕ

)2

− 1

2

∂2U(ϕ; T )

∂ϕ2
. (10)

Two eigenvalues λ1,3 of the non-perturbed Fokker–Planck
operator are shown in figure 1 as functions of temperature
for various volumes of the system. As one can see, the
first eigenvalue λ1 is a monotonic function of temperature
which, in the monostable region, asymptotically approaches
α(T − T ∞

c ). In the bulk limit λ1 = 0 for T < T ∞
c ,

pointing at the spontaneous symmetry breaking phenomenon.
In fact, the approximate assumption λ1 = 2rK with the
Kramers rate rK cannot be adequate in the whole range of
parameters T and V for T < T ∞

c [34]. A substantially better
approximation of λ1 is found in the context of the activated
Brownian motion [35]. Unlike the monotonicity of the rate
λ1, the third eigenvalue λ3 has a minimum in the bistable
region which shifts to the critical temperature T ∞

c and becomes
deeper when the volume increases. In the bulk limit λ3 =
2α(T ∞

c − T ) for T < T ∞
c , in accordance with the Landau

phase transition theory. We stress that, namely, the third
eigenvalue has to be interpreted as the relaxation rate of the
intrawell processes below T ∞

c , similar to the first eigenvalue
which is a measure of the intrawell dynamics above T ∞

c .
The same follows from the comparison of the corresponding
eigenfunctions (see figure 1(d)). Moreover, from figure 1 one
can conclude that symmetry is restored in finite samples as
soon as the relaxation rate λ1 becomes nonzero. However,
this happens simultaneously with approaching the minimal
value of λ3 as temperature increases. The latter circumstance
essentially indicates the transition point in spatially restricted
systems.

From figure 1 it also follows that the slowdown
phenomenon in the finite samples is accompanied by an
increase in the slowdown rate near the transition point.
The latter peculiarity develops as the volume of the sample
decreases and seems to be crucial to the transition phenomenon
in the vicinity of the critical size.

4. Critical temperature in finite samples

According to the phenomenological finite-size scaling the-
ory [5–8], any thermodynamic property of M has its corre-
sponding scaling form

M = Lγ /ν M0(θ L1/ν), (11)

where γ is the corresponding critical exponent, ν is the
critical exponent of the correlation length, θ = T/T ∞

c − 1,
and M0 is the finite-size scaling function. Note also that
the subsidiary scaling hypothesis ξL � L X (L/ξ), where
ξL is the correlation length in the actual finite-size system,
reconciles the role of the variable L/ξL with the original
hypothesis of phenomenological finite-size scaling about the
role of L/ξ [36].

The finite-size studies indicate that the structure of the
finite-size scaling functions M0(x) is most interesting below
the critical temperature T ∞

c where they exhibit characteristic
maxima [37–40]. The location of peaks in thermodynamic
derivatives M can be used to determine the critical temperature
of a finite system:

Tc = T ∞
c − C L−λ, (12)

3
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Figure 2. The plots of the critical temperature Tc (circles) versus the linear dimension of the system L = V 1/3 for α = 1 ((a), (c), (d)) and
α = 10 (b). The bulk transition temperature is T ∞

c = 10. In ((a), (b)) the dashed lines are determined by (12) and solid lines by (13) with the
proportionality coefficient determined by means of a suitable fitting. In ((c), (d)) the appropriate logarithmic plots are present. See comments
in the text.

where C is a non-universal positive constant and λ is a shift
exponent [8]. As far as one accepts the assertion that the
only criterion determining the finite-size scaling effects in the
critical region is ξ ∼ L, one can obtain λ = 1/ν. For further
analysis, we will be interested in the temperatures at which the
relaxation time τ3 takes its maximal value (or, equivalently, λ3

takes its minimal value), reflecting in such a way a slowdown
of the relaxation of order parameter fluctuations for the given
dimension of the sample (see figure 1). We will also associate
these temperatures with finite-sample critical temperatures.
The dependences of the critical temperature on the linear size
of the system are illustrated in figure 2(a) for α = 1 and in
figure 2(b) for α = 10. As the volume of the sample decreases,
the transition temperature decreases in accordance with (12).
This allows us to determine the shift exponent λ which equals
λ = 1.405 for α = 1 (the slope of the solid line in figure 2(d)
fixes this value) and λ = 1.454 for α = 10. These estimates are
close to 3

2 which can be obtained as the approximate value of
1/ν by using the hyperscaling relation dν = 2 − α with α ≈ 0
and d = 3 (three-dimensional case) [14]. Thus, in the present
approach one can construct the quantity being an analogue
of the correlation length ξ . This length scale determines
the behavior of the critical temperature in sufficiently large
samples. However, in small samples the shift equation (12)
breaks down as shown in figure 2 and the critical size Lcr =
(T ∞

c /C)−1/λ does not appear. As follows from figure 2, this is
caused by the appearance of another length scale in sufficiently
small systems. In the present model, the critical temperature
behaves in sufficiently small systems as Tc ∼ L p, where
p ∼ 3 (the slope in figure 2(c) determines the value p). This
excludes the existence of a finite critical size of the sample and

Tc remains nonzero for arbitrary finite sizes. Thus, one can find
Lcr = 0. The latter result is not surprising because the present
scheme does not take into account the main factors responsible
for a finite critical size [41–43]. Nevertheless, it predicts
suppression of ferroelectricity as the volume of the sample
decreases, enacted solely by thermodynamics of the system
and ignoring all boundary effects. Also it has to be noted
that corrections [44, 45] to (12) do not predict the calculated
dependence of the critical temperature on size.

The approximate solution for the transition temperature
can be derived from the condition of competition between
the activation energy and thermal energy V �U ∼ T , where
�U = a(T )2/4 is the barrier height of the potential (2). This
relation also follows from the analysis of the characteristic
features of the potential (10) and is depicted in figures 2(a)
and (b) with good agreement with numerically obtained points.
The latter condition may also be interpreted as

L ∼ ρ(T )ξ(T ), (13)

where ξ ∼ (−θ)−2/3 has the meaning of correlation length and
ρ ∼ T 1/3. The phase transition in sufficiently large samples
(T ∼ T ∞

c ) is then determined by the condition L ∼ ξ , but
in smaller systems (T ∼ 0) the critical behavior is driven by
the thermal fluctuation and L ∼ ρ, where the coefficient of
proportionality depends on α in accordance with figures 2(a)
and (b). This essentially reflects the competition between
two characteristic length scales on the critical behavior in the
spatially restricted system. At the same time the above criterion
of the phase transition V �U ∼ T takes into account all
features of the conventional ideology, i.e. the growth of the
fluctuations, the slowdown of the relaxation of the fluctuations

4
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and the correlation of the fluctuations in the transitional region.
The latter criterion also has the same structure as the Ginzburg
condition (sufficiently far from the transition temperature T ∞

c )

Gi = (
T ∞

c
4�U Vc

)2 
 1, where Gi is the Ginzburg number and

Vc = ξ 3 is the correlation volume (see [14]). The correlation
of the fluctuations implies that the correlation length should be
the only significant length scale which, being finite even at zero
temperature, leads to a finite value of the critical size. However,
if L 
 ξ(0), the correlation length loses its importance
for the critical behavior. As follows from (13), in this case
the length ρ, appearing as a consequence of the fluctuations,
determines the leading length scale for the phase transition.
Thus, we conclude that the crucial role of the correlation length
in large systems has to be devolved to the length ρ in small
samples. This result is a consequence of the increase in the
slowdown rate near the critical point as the volume of the
sample decreases.

One can also incorporate the critical size into the
present model by taking into account the surface-affected
layer [46, 47]. Assuming the passive surface layer [48] is
connected successively with a homogeneous ferroelectric core,
one can estimate the layer thickness as the extrapolation length
δ appearing in the Landau–Devonshire theory with a surface
term [49, 50]. The physical interpretation of δ depends on
the nature of the layer [51]. This consideration leads to
the formal transformation of the noise intensity in (1) T

V →
T

V −δ3 and guarantees a complete suppression of ferroelectricity
below some critical dimension. However, in this case the
condition (13) will take the form

(V − δ3) ∼ ρ3ξ 3, (14)

where V is the volume of the system. Thus, in the macroscopic
case V � δ3 the phase transition occurs when L ∼ ξ , but
near the critical volume V ∼ δ3 the transitional behavior is
determined by the condition (V − δ3) ∼ ρ3, which implies the
leading role of the length ρ on the transitional behavior in the
vicinity of the critical size. Moreover, our approach predicts
the enhancement of the susceptibility in small samples [19].
Thus, we believe that the present model may be of relevance for
the description of the peculiarities of the critical temperature
in ferroelectric particles (see [13, 52–54]), especially in
sufficiently small ones.

5. Conclusion

We have examined the critical slowdown in the model with
bulk second-order phase transition and demonstrated that this
phenomenon is determined in spatially restricted systems by
the eigenvalues of the Fokker–Planck operator. According to
the evolution of the critical temperature in finite samples, we
have established the simple criterion of the phase transition,
which implies that the correlation length can play a substantial
role only in a macroscopic system. In sufficiently small
samples, particularly in the vicinity of the critical size,
the slowdown rate increases and the critical behavior is
driven by the thermal fluctuations, leading to suppression of
ferroelectricity. We believe that these predictions will be useful

for interpreting the experimental data about the evolution of
transition temperature near the critical size in ferroelectric
materials.
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